Monitoring of umbilical cord blood lead levels and sources assessment among the Inuit

B Lévesque, J-F Duchesne, C Gariépy, M Rhainsd, P Dumas, A M Scheuhammer, J-F Proulx, S Déry, G Muckle, F Dallaire, É Dewailly

Analyzes completed on samples collected between 1993 and 1996 showed that about 7% of 475 Inuit newborns from northern Quebec (Canada) had a cord blood lead concentration equal to or greater than 0.48 µmol/l, an intervention level adopted by many governmental agencies. A comparison between the cord blood lead isotope ratios of Inuit and southern Quebec newborns showed that lead sources for these populations were different. Our investigation suggests that lead shots used for game hunting were an important source of lead exposure in the Inuit population. A cohort study conducted in three Inuit communities shows a significant decrease of cord blood lead concentrations after a public health intervention to reduce the use of lead shot. Lead shot ammunition can be a major and preventable source of human exposure to lead.

For many years, lead contamination of the environment has become a major public health preoccupation, notably concerning neurobehavioural effects during infancy and childhood. Nunavik is a territory located in the northern part of the province of Quebec (Canada) that is inhabited by about 8000 Inuit. A previous study done in Nunavik showed that 24% of 198 women aged between 18 and 39 years had cord blood lead levels equal to or greater than 0.48 µmol/l (10 µg/dl), the intervention level adopted by the Canadian authority for young children. Therefore, lead was a contaminant included in a cord blood monitoring programme undertaken to assess the body burden of organochlorine compounds and heavy metals in newborns in this population. We present here the results of this programme for lead and those of a subsequent investigation aimed at determining the main sources of lead exposure.

METHODS

Mothers were recruited in the two health centres of Nunavik. Almost all women approached agreed to participate in the study. In all, 475 newborns from 14 communities in Nunavik (95% of all births from Nunavik during the time of the study) were recruited. Following informed consent from the mothers, blood lead levels were evaluated in the umbilical cord. Sampling was done between November 1993 and December 1996. Blood lead concentrations were determined by graphite furnace atomic absorption spectrometry using a Perkin-Elmer instrument, with a detection limit of 0.01 µmol/l.

Information on the mother’s age, obstetric anamnesis, and tobacco consumption (yes or no) before and during pregnancy, and on the village of residence was obtained from medical files. After log transformation of the cord blood lead level data, regression analysis was performed to analyse these variables in relation to cord blood lead concentrations. Nutritional aspects, as well as haemoglobin, iron, and calcium balance were not assessed because of the exploratory nature of the monitoring and the logistical difficulties of collecting data in this area.

Blood lead isotope ratios can help identify the origin of human exposure. This was done for Nunavik newborns using a subset of 60 samples from those which had a sufficient quantity of blood. All samples (n = 29) with high cord blood lead concentrations (≥0.48 µmol/l) from 11 communities were included. For each of these 29 samples, at least one randomly selected sample from the low lead level group (lower than 0.48 µmol/l) of the same community were also included. Blood lead isotope ratios were therefore determined. The mean cord blood lead concentrations (geometric) and the mean 206Pb:207Pb ratios (arithmetic) of the high and low exposure groups of newborns were compared with each other, and with 89 randomly selected samples (at least three samples for each most exposed Inuit) taken from a survey carried out in southern Quebec during the same period. Comparisons were made using Student’s t test. The statistical significance level was set at 0.05. The 206Pb:207Pb isotope ratios were evaluated by ICP-MS using a Perkin-Elmer SCIEX Elan 5000 A instrument.

RESULTS

Table 1 presents cord blood lead concentrations by community of residence. The geometric mean was 0.19 µmol/l (95% confidence interval (CI): 0.18 to 0.20). Thirty three newborns (6.9%) had cord blood lead concentrations ≥0.48 µmol/l, with eight (1.6%) exceeding 0.72 µmol/l. No significant difference was found between the community of residence and cord blood lead levels according to the 95% CI.

Of the variables analysed through multivariate analysis, only maternal age (p < 0.0001; partial r² = 0.14) and tobacco smoking during pregnancy (p < 0.001; partial r² = 0.05) were associated with cord blood lead concentrations. The geometric mean of cord blood lead levels and the average 206Pb:207Pb ratio for the 60 Inuit newborns were respectively 0.34 µmol/l (95% CI: 0.29 to 0.41) and 1.195 (range

Main message

- The ingestion of lead shot or lead fragments from game hunted with lead ammunition seems responsible for the high cord blood lead levels found in Nunavik.

Policy implications

- The use of lead ammunition should be banned for all hunting using shotguns, and the use of non-toxic alternatives should be actively promoted.
1.166–1.230; 95% CI: 1.190 to 1.200). For the high and low exposed Inuit groups, lead levels were 0.62 μmol/l (95% CI: 0.57 to 0.67) and 0.20 μmol/l (95% CI: 0.17 to 0.23), respectively. The difference was significant (p < 0.0001). For these two samples, the average 206Pb:207Pb ratios were 1.199 (range 1.166–1.230; 95% CI: 1.192 to 1.205) and 1.192 (range 1.174–1.212; 95% CI: 1.187 to 1.196). The difference was non-significant (p = 0.09). In comparison, mean cord blood lead levels and 206Pb:207Pb ratio for the southern Quebec newborn population were respectively 0.11 μmol/l (95% CI: 0.10 to 0.11) and 1.166 (range 1.126–1.230; 95% CI: 1.190 to 1.200). For the high and low concentrations for women of childbearing age. These variables are the age of the individuals (partial r² = 0.13) and the level of consumption of geese and ducks (partial r² = 0.13).

Lead shots pellets are regularly seen in the digestive system of the Nunavik Inuit when abdominal x-ray examinations are performed (personal communication, Dr Normand Tremblay, Nunavik Regional Board of Health and Social Services). Lead shot pellets were also detected in the digestive system of Cree Indians from northern Ontario, Canada. Studies have shown that ingestion of lead shot or other small metallic lead objects can result in increased blood lead concentrations. Only one to two lead shot pellets trapped in the appendix can be sufficient to increase the blood lead concentration to more than 0.48 μmol/l.

The average 206Pb:207Pb ratio for the Inuit newborns was 1.195 with a relatively wide range (1.166–1.230). Lead isotope data were also collected by the Canadian Wildlife Service for lead shot pellets from different brands of shotshell ammunition. Their results showed that the range of 206Pb:207Pb ratios for pellets from four brands of shotgun cartridges used by Nunavik hunters (personal communication, Dr Daniel Leclerc, Makivik Society) were also very wide (range 1.125–1.233). However, eight of the 10 samples of analyzed cartridges yielded relatively high ratios of 206Pb:207Pb.

### Table 1

<table>
<thead>
<tr>
<th>Community</th>
<th>n</th>
<th>Geometric mean (μmol/l)</th>
<th>Range (μmol/l)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuujjuaq</td>
<td>16</td>
<td>0.28</td>
<td>0.08–1.02</td>
<td>0.20 to 0.38</td>
</tr>
<tr>
<td>Umiujaq</td>
<td>12</td>
<td>0.17</td>
<td>0.04–0.43</td>
<td>0.11 to 0.28</td>
</tr>
<tr>
<td>Inukjuak</td>
<td>47</td>
<td>0.17</td>
<td>0.01–0.64</td>
<td>0.14 to 0.21</td>
</tr>
<tr>
<td>Povungnituk</td>
<td>69</td>
<td>0.22</td>
<td>0.05–1.21</td>
<td>0.19 to 0.25</td>
</tr>
<tr>
<td>Akulivik</td>
<td>20</td>
<td>0.19</td>
<td>0.09–1.31</td>
<td>0.14 to 0.25</td>
</tr>
<tr>
<td>Iqaluit</td>
<td>16</td>
<td>0.23</td>
<td>0.11–0.69</td>
<td>0.17 to 0.30</td>
</tr>
<tr>
<td>Salluit</td>
<td>30</td>
<td>0.21</td>
<td>0.06–0.94</td>
<td>0.17 to 0.27</td>
</tr>
<tr>
<td>Kangiqsujuq</td>
<td>23</td>
<td>0.15</td>
<td>0.05–0.33</td>
<td>0.13 to 0.18</td>
</tr>
<tr>
<td>Kuujjuq</td>
<td>21</td>
<td>0.19</td>
<td>0.05–0.72</td>
<td>0.14 to 0.25</td>
</tr>
<tr>
<td>Kangiqsujuq</td>
<td>27</td>
<td>0.20</td>
<td>0.07–0.64</td>
<td>0.16 to 0.25</td>
</tr>
<tr>
<td>Aupaluk</td>
<td>9</td>
<td>0.25</td>
<td>0.09–0.89</td>
<td>0.16 to 0.40</td>
</tr>
<tr>
<td>Tasiujaq</td>
<td>13</td>
<td>0.19</td>
<td>0.07–0.42</td>
<td>0.15 to 0.25</td>
</tr>
<tr>
<td>Kuujjuq</td>
<td>90</td>
<td>0.15</td>
<td>0.04–1.01</td>
<td>0.13 to 0.17</td>
</tr>
<tr>
<td>Kangiqsujuq</td>
<td>38</td>
<td>0.25</td>
<td>0.07–0.77</td>
<td>0.21 to 0.30</td>
</tr>
<tr>
<td>Unknown</td>
<td>44</td>
<td>0.19</td>
<td>0.02–1.28</td>
<td>0.16 to 0.24</td>
</tr>
<tr>
<td>Total</td>
<td>475</td>
<td>0.19</td>
<td>0.01–1.31</td>
<td>0.18 to 0.20</td>
</tr>
</tbody>
</table>
Umbilical cord blood lead in Nunavik

 ranging from 1.164 to 1.233 (six over 1.201). This information, together with epidemiological data which showed an association between blood lead levels in Nunavik women and the consumption of ducks and geese, suggest that the ingestion of lead shots or lead bearing fragments from game meat may be in a large part responsible for the high lead levels found in Nunavik Inuit newborns.

In 1999, in order to protect fauna, the use of lead shot cartridges was banned in Canada for the hunting of migratory birds. During the winter of 1999, public health authorities of Nunavik actively informed Inuit hunters and ammunition retailers about the possible impact of lead shot ammunition on the newborn’s blood lead levels. As part of a cohort study in progress in Nunavik newborns on neurobehavioural effects of heavy metals and organochlorine exposure, we were able to gather new information about the cord blood lead levels in three communities from the beginning of 1997 to the beginning of 2001. The geometric mean of 28 newborns born after the public health intervention (April 1999) (0.12 µmol/l; 95% CI: 0.09 to 0.16) was significantly lower (p < 0.0001) than the geometric mean of 214 children (including the 158 children recruited in the monitoring study before 1997) born before this period (0.20 µmol/l; 95% CI: 0.19 to 0.22). Even after controlling for maternal age, tobacco smoking, and community of residence, the decrease in cord blood lead levels remained significant (p < 0.0001). Although preliminary, these results indicate that efforts to reduce lead exposure from game hunting in Nunavik should continue.

The results of this study suggest that lead shots may be a major source of lead exposure for humans that consume hunted game animals. From a public health perspective, use of lead shot ammunition should be replaced internationally with a non-toxic metal or alloy. This is particularly important for small game hunters and retailers about the possible impact of lead shot ammunition on the newborn’s blood lead levels.

ACKNOWLEDGEMENTS

We thank P Ayotte, J-C Belles-Isles, S Bernier, M-F Gagnon, D Leclerc, and H Shaver for their assistance in different aspects of this study. This work was funded by the Northern Contaminant Program of Indian and Northern Affairs Canada.

........................

Authors’ affiliations

B Levesque, J-F Duchesne, M Rhainds, G Muckle, F Dallaore, É Dewailly, Unité de recherche en santé publique, Centre de recherche du CHUL, 945, avenue Wolfe, Sainte-Foy, Québec, G1V 5B3, Canada

C Gariepy, GEOTOP, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada

P Dumas, Centre de toxicologie du Québec, Pavillon CHUL, Centre Hospitalier Universitaire de Québec, 945, avenue Wolfe, Sainte-Foy, Québec, G1V 5B3, Canada

A M Scheuhammer, Canadian Wildlife Service, National Wildlife Research Centre, 100 Gamelin Boulevard, Hull, Québec, K1A 0H3, Canada

J-F Proulx, Nunavik Board of Health and Social Services, 2400 d’Estimauville, Beauparlant, Québec, G1E 7G9, Canada

S Déry, Nunavik Board of Health and Social Services, 4, rue Rogers Lane, Drummondville, Québec, J2C 1H8, Canada

Correspondence to: Dr B Levesque, Unité de recherche en santé publique du CHUL-CHUQ, 945, avenue Wolfe, Sainte-Foy, Québec, G1V 5B3, Canada; Benoit.Levesque@crchul.ulaval.ca

Accepted 11 October 2002

REFERENCES


www.occenvmed.com
Monitoring of umbilical cord blood lead levels and sources assessment among the Inuit

B Lévesque, J-F Duchesne, C Gariépy, et al.

*Occup Environ Med* 2003 60: 693-695
doi: 10.1136/oem.60.9.693

Updated information and services can be found at:
http://oem.bmj.com/content/60/9/693.full.html

These include:

**References**
This article cites 5 articles
http://oem.bmj.com/content/60/9/693.full.html#ref-list-1

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/